메트릭 (metric) 애플리케이션에서 발생한 메트릭을 그 순간만 확인하는 것이 아니라 과거 이력까지 함께 확인하려면 메트릭을 보관하는 DB가 필요하다. 이렇게 하려면 어디선가 메트릭을 지속해서 수집하고 DB에 저장해야 한다. 프로메테우스가 바로 이런 역할을 담당한다. 전체 구조 스프링 부트 액츄에이터와 마이크로미터를 사용하면 수 많은 메트릭을 자동으로 생성한다. 1.1 마이크로미터 프로메테우스 구현체는 프로메테우스가 읽을 수 있는 포멧으로 메트릭을 생성한다. 프로메테우스는 이렇게 만들어진 메트릭을 지속해서 수집한다. 프로메테우스는 수집한 메트릭을 내부 DB에 저장한다. 사용자는 그라파나 대시보드 툴을 통해 그래프로 편리하게 메트릭을 조회한다. 이때 필요한 데이터는 프로메테우스를 통해서 조회한다. 프로메..
서비스를 운영할 때는 애플리케이션의 CPU, 메모리, 커넥션 사용, 고객 요청수 같은 수 많은 지표들을 확인하는 것이 필요하다. 그래야 어디에 어떤 문제가 발생했는지 사전에 대응도 할 수 있고, 실제 문제가 발생해도 원인을 빠르게 파악해서 대처할 수 있다. 예를 들어서 메모리 사용량이 가득 찼다면 메모리 문제와 관련있는 곳을 빠르게 찾아서 대응할 수 있을 것이다. 세상엔 수 많은 모니터링 툴이 존재하며, 시스템의 다양한 정보를 이 모니터링 툴에 전달해서 사용하게 된다. 하지만 모니터링 툴이 작동하려면 시스템의 다양한 지표들을 각각의 모니터링 툴에 맞도록 만들어서 보내주어야 한다. 모니터링 툴에 지표 전달 예를 들어서 CPU, JVM, 커넥션 정보 등을 JMX 툴에 전달해야 한다면, 각각의 정보를 JMX ..
- Total
- Today
- Yesterday
- 그리디
- MySQL
- 백준
- 릿코드
- spring boot
- 자료구조
- 정렬
- Real MySQL
- kotlin
- 스프링 부트
- 데이터베이스
- 코테
- 리팩토링
- 문자열
- 구현
- webflux
- 코틀린
- Algorithm
- 김영한
- 노마드
- 인프런
- 파이썬
- 알고리즘
- 스프링부트
- mysql 8.0
- 스프링
- Spring
- 노마드코더
- leetcode
- 북클럽
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |